Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508723

RESUMO

Mucin 1 (MUC1) is a transmembrane mucin expressed at the apical surface of epithelial cells at mucosal surfaces. MUC1 has a barrier function against bacterial invasion and is well known for its aberrant expression and glycosylation in adenocarcinomas. The MUC1 extracellular domain contains a variable number of tandem repeats (VNTR) of 20 amino acids, which are heavily O-linked glycosylated. Monoclonal antibodies against the MUC1 VNTR are powerful research tools with applications in the diagnosis and treatment of MUC1-expressing cancers. Here, we report direct mass spectrometry-based sequencing of anti-MUC1 hybridoma-derived 139H2 IgG, enabling reverse-engineering of the functional recombinant monoclonal antibody. The crystal structure of the 139H2 Fab fragment in complex with the MUC1 epitope was solved, revealing the molecular basis of 139H2 binding specificity to MUC1 and its tolerance to O-glycosylation of the VNTR. The available sequence of 139H2 will allow further development of MUC1-related diagnostic, targeting, and treatment strategies.


Assuntos
Mucina-1 , Neoplasias , Humanos , Sequência de Aminoácidos , Mucina-1/genética , Mucina-1/química , Mucinas/genética , Mucinas/metabolismo , Glicosilação , Anticorpos Monoclonais
2.
Nat Commun ; 15(1): 2319, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485931

RESUMO

Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Primatas , Imunoglobulina G , Anticorpos Monoclonais , Fungos , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Mamíferos
3.
Structure ; 32(1): 60-73.e5, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37992710

RESUMO

The cell-surface attached glycoprotein contactin 2 is ubiquitously expressed in the nervous system and mediates homotypic cell-cell interactions to organize cell guidance, differentiation, and adhesion. Contactin 2 consists of six Ig and four fibronectin type III domains (FnIII) of which the first four Ig domains form a horseshoe structure important for homodimerization and oligomerization. Here we report the crystal structure of the six-domain contactin 2Ig1-6 and show that the Ig5-Ig6 combination is oriented away from the horseshoe with flexion in interdomain connections. Two distinct dimer states, through Ig1-Ig2 and Ig3-Ig6 interactions, together allow formation of larger oligomers. Combined size exclusion chromatography with multiangle light scattering (SEC-MALS), small-angle X-ray scattering (SAXS) and native MS analysis indicates contactin 2Ig1-6 oligomerizes in a glycan dependent manner. SAXS and negative-stain electron microscopy reveals inherent plasticity of the contactin 2 full-ectodomain. The combination of intermolecular binding sites and ectodomain plasticity explains how contactin 2 can function as a homotypic adhesion molecule in diverse intercellular environments.


Assuntos
Moléculas de Adesão Celular Neuronais , Contactina 2 , Espalhamento a Baixo Ângulo , Difração de Raios X , Sítios de Ligação , Conformação Molecular , Moléculas de Adesão Celular Neuronais/química , Adesão Celular/fisiologia
4.
Mol Cell Proteomics ; 23(1): 100690, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065436

RESUMO

Serum proteomics has matured and is now able to monitor hundreds of proteins quantitatively in large cohorts of patients. However, the fine characteristics of some of the most dominant proteins in serum, the immunoglobulins, are in these studies often ignored, due to their vast, and highly personalized, diversity in sequences. Here, we focus exclusively on these personalized features in the serum proteome and distinctively chose to study individual samples from a low diversity population: elderly donors infected by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2). By using mass spectrometry-based methods, immunoglobulin IgG1 and IgA1 clonal repertoires were monitored quantitatively and longitudinally in more than 50 individual serum samples obtained from 17 Corona virus disease 2019 patients admitted to intensive care units. These clonal profiles were used to examine how each patient reacted to a severe SARS-CoV-2 infection. All 17 donors revealed unique polyclonal repertoires and substantial changes over time, with several new clones appearing following the infection, in a few cases leading to a few, very high, abundant clones dominating their repertoire. Several of these clones were de novo sequenced through combinations of top-down, middle-down, and bottom-up proteomics approaches. This revealed sequence features in line with sequences deposited in the SARS-CoV-specific antibody database. In other patients, the serological Ig profiles revealed the treatment with tocilizumab, that subsequently dominated their serological IgG1 repertoire. Tocilizumab clearance could be monitored, and a half-life of approximately 6 days was established. Overall, our longitudinal monitoring of IgG1 and IgA1 repertoires of individual donors reveals that antibody responses are highly personalized traits of each patient, affected by the disease and the chosen clinical treatment. The impact of these observations argues for a more personalized and longitudinal approach in patients' diagnostics, both in serum proteomics as well as in monitoring immune responses.


Assuntos
COVID-19 , Humanos , Idoso , SARS-CoV-2 , Proteoma , Imunoglobulina G , Imunoglobulina A , Anticorpos Antivirais
5.
Nature ; 624(7990): 201-206, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37794193

RESUMO

Coronavirus spike proteins mediate receptor binding and membrane fusion, making them prime targets for neutralizing antibodies. In the cases of severe acute respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus, spike proteins transition freely between open and closed conformations to balance host cell attachment and immune evasion1-5. Spike opening exposes domain S1B, allowing it to bind to proteinaceous receptors6,7, and is also thought to enable protein refolding during membrane fusion4,5. However, with a single exception, the pre-fusion spike proteins of all other coronaviruses studied so far have been observed exclusively in the closed state. This raises the possibility of regulation, with spike proteins more commonly transitioning to open states in response to specific cues, rather than spontaneously. Here, using cryogenic electron microscopy and molecular dynamics simulations, we show that the spike protein of the common cold human coronavirus HKU1 undergoes local and long-range conformational changes after binding a sialoglycan-based primary receptor to domain S1A. This binding triggers the transition of S1B domains to the open state through allosteric interdomain crosstalk. Our findings provide detailed insight into coronavirus attachment, with possibilities of dual receptor usage and priming of entry as a means of immune escape.


Assuntos
Betacoronavirus , Polissacarídeos , Ácidos Siálicos , Glicoproteína da Espícula de Coronavírus , Humanos , Regulação Alostérica , Betacoronavirus/química , Betacoronavirus/ultraestrutura , Resfriado Comum/virologia , Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Evasão da Resposta Imune
6.
Chem Sci ; 14(35): 9316-9327, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37712025

RESUMO

Native mass spectrometry is a potent method for characterizing biomacromolecular assemblies. A critical aspect to extracting accurate mass information is the correct inference of the ion ensemble charge states. While a variety of experimental strategies and algorithms have been developed to facilitate this, virtually all approaches rely on the implicit assumption that any peaks in a native mass spectrum can be directly attributed to an underlying charge state distribution. Here, we demonstrate that this paradigm breaks down for several types of macromolecular protein complexes due to the intrinsic heterogeneity induced by the stochastic nature of their assembly. Utilizing several protein assemblies of adeno-associated virus capsids and ferritin, we demonstrate that these particles can produce a variety of unexpected spectral appearances, some of which appear superficially similar to a resolved charge state distribution. When interpreted using conventional charge inference strategies, these distorted spectra can lead to substantial errors in the calculated mass (up to ∼5%). We provide a novel analytical framework to interpret and extract mass information from these spectra by combining high-resolution native mass spectrometry, single particle Orbitrap-based charge detection mass spectrometry, and sophisticated spectral simulations based on a stochastic assembly model. We uncover that these mass spectra are extremely sensitive to not only mass heterogeneity within the subunits, but also to the magnitude and width of their charge state distributions. As we postulate that many protein complexes assemble stochastically, this framework provides a generalizable solution, further extending the usability of native mass spectrometry in the characterization of biomacromolecular assemblies.

7.
J Proteome Res ; 22(9): 3022-3028, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37499263

RESUMO

Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell disorder characterized by the presence of a predominant monoclonal antibody (i.e., M-protein) in serum, without clinical symptoms. Here we present a case study in which we detect MGUS by liquid-chromatography coupled with mass spectrometry (LC-MS) profiling of IgG1 in human serum. We detected a Fab-glycosylated M-protein and determined the full heavy and light chain sequences by bottom-up proteomics techniques using multiple proteases, further validated by top-down LC-MS. Moreover, the composition and location of the Fab-glycan could be determined in CDR1 of the heavy chain. The outlined approach adds to an expanding mass spectrometry-based toolkit to characterize monoclonal gammopathies such as MGUS and multiple myeloma, with fine molecular detail. The ability to detect monoclonal gammopathies and determine M-protein sequences straight from blood samples by mass spectrometry provides new opportunities to understand the molecular mechanisms of such diseases.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Paraproteinemias , Humanos , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Paraproteinemias/diagnóstico , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Espectrometria de Massas , Imunoglobulina G
8.
Glycobiology ; 33(10): 784-800, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37471650

RESUMO

Recent human H3N2 influenza A viruses have evolved to employ elongated glycans terminating in α2,6-linked sialic acid as their receptors. These glycans are displayed in low abundancies by (humanized) Madin-Darby Canine Kidney cells, which are commonly employed to propagate influenza A virus, resulting in low or no viral propagation. Here, we examined whether the overexpression of the glycosyltransferases ß-1,3-N-acetylglucosaminyltransferase and ß-1,4-galactosyltransferase 1, which are responsible for the elongation of poly-N-acetyllactosamines (LacNAcs), would result in improved A/H3N2 propagation. Stable overexpression of ß-1,3-N-acetylglucosaminyltransferase and ß-1,4-galactosyltransferase 1 in Madin-Darby Canine Kidney and "humanized" Madin-Darby Canine Kidney cells was achieved by lentiviral integration and subsequent antibiotic selection and confirmed by qPCR and protein mass spectrometry experiments. Flow cytometry and glycan mass spectrometry experiments using the ß-1,3-N-acetylglucosaminyltransferase and/or ß-1,4-galactosyltransferase 1 knock-in cells demonstrated increased binding of viral hemagglutinins and the presence of a larger number of LacNAc repeating units, especially on "humanized" Madin-Darby Canine Kidney-ß-1,3-N-acetylglucosaminyltransferase cells. An increase in the number of glycan receptors did, however, not result in a greater infection efficiency of recent human H3N2 viruses. Based on these results, we propose that H3N2 influenza A viruses require a low number of suitable glycan receptors to infect cells and that an increase in the glycan receptor display above this threshold does not result in improved infection efficiency.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza A , Humanos , Animais , Cães , Vírus da Influenza A Subtipo H3N2/metabolismo , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , N-Acetil-Lactosamina Sintase/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A/metabolismo , Células Madin Darby de Rim Canino , Polissacarídeos/química
9.
Proc Natl Acad Sci U S A ; 120(26): e2303292120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339194

RESUMO

The ongoing COVID-19 pandemic has had great societal and health consequences. Despite the availability of vaccines, infection rates remain high due to immune evasive Omicron sublineages. Broad-spectrum antivirals are needed to safeguard against emerging variants and future pandemics. We used messenger RNA (mRNA) display under a reprogrammed genetic code to find a spike-targeting macrocyclic peptide that inhibits SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Wuhan strain infection and pseudoviruses containing spike proteins of SARS-CoV-2 variants or related sarbecoviruses. Structural and bioinformatic analyses reveal a conserved binding pocket between the receptor-binding domain, N-terminal domain, and S2 region, distal to the angiotensin-converting enzyme 2 receptor-interaction site. Our data reveal a hitherto unexplored site of vulnerability in sarbecoviruses that peptides and potentially other drug-like molecules can target.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Pandemias/prevenção & controle , Peptídeos/farmacologia
10.
ACS Chem Biol ; 17(9): 2425-2436, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35926224

RESUMO

Influenza A viruses pose a serious pandemic risk, while generation of efficient vaccines against seasonal variants remains challenging. There is thus a pressing need for new treatment options. We report here a set of macrocyclic peptides that inhibit influenza A virus infection at low nanomolar concentrations by binding to hemagglutinin, selected using ultrahigh-throughput screening of a diverse peptide library. The peptides are active against both H1 and H5 variants, with no detectable cytotoxicity. Despite the high sequence diversity across hits, all tested peptides were found to bind to the same region in the hemagglutinin stem by HDX-MS epitope mapping. A mutation in this region identified in an escape variant confirmed the binding site. This stands in contrast to the immunodominance of the head region for antibody binding and suggests that macrocyclic peptides from in vitro display may be well suited for finding new druggable sites not revealed by antibodies. Functional analysis indicates that these peptides stabilize the prefusion conformation of the protein and thereby prevent virus-cell fusion. High-throughput screening of macrocyclic peptides is thus shown here to be a powerful method for the discovery of novel broadly acting viral fusion inhibitors with therapeutic potential.


Assuntos
Vírus da Influenza A , Anticorpos Antivirais/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Hemaglutininas , Vírus da Influenza A/química , Biblioteca de Peptídeos
11.
Commun Biol ; 5(1): 785, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927436

RESUMO

The envelope glycoprotein GP of the ebolaviruses is essential for host cell entry and the primary target of the host antibody response. GP is heavily glycosylated with up to 17 N-linked sites, numerous O-linked glycans in its disordered mucin-like domain (MLD), and three predicted C-linked mannosylation sites. Glycosylation is important for host cell attachment, GP stability and fusion activity, and shielding from neutralization by serum antibodies. Here, we use glycoproteomics to profile the site-specific glycosylation patterns of ebolavirus GP. We detect up to 16 unique O-linked glycosylation sites in the MLD, and two O-linked sites in the receptor-binding GP1 subunit. Multiple O-linked glycans are observed within N-linked glycosylation sequons, suggesting crosstalk between the two types of modifications. We confirmed C-mannosylation of W288 in full-length trimeric GP. We find complex glycosylation at the majority of N-linked sites, while the conserved sites N257 and especially N563 are enriched in unprocessed glycans, suggesting a role in host-cell attachment via DC-SIGN/L-SIGN. Our findings illustrate how N-, O-, and C-linked glycans together build the heterogeneous glycan shield of GP, guiding future immunological studies and functional interpretation of ebolavirus GP-antibody interactions.


Assuntos
Ebolavirus , Ebolavirus/metabolismo , Glicosilação , Mucinas/metabolismo , Polissacarídeos/metabolismo , Proteínas do Envelope Viral/metabolismo
12.
Anal Chem ; 94(29): 10391-10399, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35834437

RESUMO

Antibodies can target a vast molecular diversity of antigens. This is achieved by generating a complementary diversity of antibody sequences through somatic recombination and hypermutation. A full understanding of the antibody repertoire in health and disease therefore requires dedicated de novo sequencing methods. Next-generation cDNA sequencing methods have laid the foundation of our current understanding of the antibody repertoire, but these methods share one major limitation in that they target the antibody-producing B-cells, rather than the functional secreted product in bodily fluids. Mass spectrometry-based methods offer an opportunity to bridge this gap between antibody repertoire profiling and bulk serological assays, as they can access antibody sequence information straight from the secreted polypeptide products. In a step to meeting the challenge of mass spectrometry (MS)-based antibody sequencing, we present a fast and simple software tool (Stitch) to map proteomic short reads to user-defined templates with dedicated features for both monoclonal antibody sequencing and profiling of polyclonal antibody repertoires. We demonstrate the use of Stitch by fully reconstructing two monoclonal antibody sequences with >98% accuracy (including I/L assignment); sequencing a Fab from patient serum isolated by reversed-phase liquid chromatography (LC) fractionation against a high background of homologous antibody sequences; sequencing antibody light chains from the urine of multiple-myeloma patients; and profiling the IgG repertoire in sera from patients hospitalized with COVID-19. We demonstrate that Stitch assembles a comprehensive overview of the antibody sequences that are represented in the dataset and provides an important first step toward analyzing polyclonal antibodies and repertoire profiling.


Assuntos
COVID-19 , Proteômica , Anticorpos Monoclonais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Cadeias Leves de Imunoglobulina/genética
13.
Nat Commun ; 13(1): 2921, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614127

RESUMO

Human coronavirus OC43 is a globally circulating common cold virus sustained by recurrent reinfections. How it persists in the population and defies existing herd immunity is unknown. Here we focus on viral glycoprotein S, the target for neutralizing antibodies, and provide an in-depth analysis of its antigenic structure. Neutralizing antibodies are directed to the sialoglycan-receptor binding site in S1A domain, but, remarkably, also to S1B. The latter block infection yet do not prevent sialoglycan binding. While two distinct neutralizing S1B epitopes are readily accessible in the prefusion S trimer, other sites are occluded such that their accessibility must be subject to conformational changes in S during cell-entry. While non-neutralizing antibodies were broadly reactive against a collection of natural OC43 variants, neutralizing antibodies generally displayed restricted binding breadth. Our data provide a structure-based understanding of protective immunity and adaptive evolution for this endemic coronavirus which emerged in humans long before SARS-CoV-2.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Coronavirus Humano OC43/metabolismo , Epitopos , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
14.
Nat Chem ; 14(5): 515-522, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35273389

RESUMO

To enhance the performance of charge-detection mass spectrometry, we investigated the behaviour of macromolecular single ions on their paths towards and within the Orbitrap analyser. Ions with a mass beyond one megadalton reach a plateau of stability and can be successfully trapped for seconds, travelling a path length of multiple kilometres, thereby enabling precise mass analysis with an effective resolution of greater than 100,000 at a mass-to-charge ratio of 35,000. Through monitoring the frequency of individual ions, we show that these high-mass ions, rather than being lost from the trap, can gradually lose residual solvent molecules and, in rare cases, a single elementary charge. We also demonstrate that the frequency drift of single ions due to desolvation and charge stripping can be corrected, which improves the effective ion sampling 23-fold and gives a twofold improvement in mass precision and resolution.


Assuntos
Espectrometria de Massas , Íons/química , Substâncias Macromoleculares/química , Espectrometria de Massas/métodos
15.
Mol Ther Methods Clin Dev ; 24: 40-47, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34977271

RESUMO

Adeno-associated viruses (AAVs) represent important gene therapy vectors with several approved clinical applications and numerous more in clinical trials. Genome packaging is an essential step in the bioprocessing of AAVs and needs to be tightly monitored to ensure the proper delivery of transgenes and the production of effective drugs. Current methods to monitor genome packaging have limited sensitivity, a high demand on labor, and struggle to distinguish between packaging of the intended genome or unwanted side-products. Here we show that Orbitrap-based charge-detection mass spectrometry allows the very sensitive quantification of all these different AAV bioprocessing products. A protocol is presented that allows the quantification of genome-packed AAV preparations in under half an hour, requiring only micro-liter quantities of typical AAV preparations with ∼1013 viral capsids per milliliter. The method quickly assesses the integrity and amount of genome packed AAV particles to support AAV bioprocessing and characterization of this rapidly emerging class of advanced drug therapies.

16.
Sci Adv ; 8(1): eabj7615, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985963

RESUMO

Enteroviruses are globally prevalent human pathogens responsible for many diseases. The nonstructural protein 2C is a AAA+ helicase and plays a key role in enterovirus replication. Drug repurposing screens identified 2C-targeting compounds such as fluoxetine and dibucaine, but how they inhibit 2C is unknown. Here, we present a crystal structure of the soluble and monomeric fragment of coxsackievirus B3 2C protein in complex with (S)-fluoxetine (SFX), revealing an allosteric binding site. To study the functional consequences of SFX binding, we engineered an adenosine triphosphatase (ATPase)­competent, hexameric 2C protein. Using this system, we show that SFX, dibucaine, HBB [2-(α-hydroxybenzyl)-benzimidazole], and guanidine hydrochloride inhibit 2C ATPase activity. Moreover, cryo­electron microscopy analysis demonstrated that SFX and dibucaine lock 2C in a defined hexameric state, rationalizing their mode of inhibition. Collectively, these results provide important insights into 2C inhibition and a robust engineering strategy for structural, functional, and drug-screening analysis of 2C proteins.

17.
Cell Syst ; 12(12): 1131-1143.e5, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34613904

RESUMO

Although humans can produce billions of IgG1 variants through recombination and hypermutation, the diversity of IgG1 clones circulating in human blood plasma has largely eluded direct characterization. Here, we combined several mass-spectrometry-based approaches to reveal that the circulating IgG1 repertoire in human plasma is dominated by a limited number of clones in healthy donors and septic patients. We observe that each individual donor exhibits a unique serological IgG1 repertoire, which remains stable over time but can adapt rapidly to changes in physiology. We introduce an integrative protein- and peptide-centric approach to obtain and validate a full sequence of an individual plasma IgG1 clone de novo. This IgG1 clone emerged at the onset of a septic episode and exhibited a high mutation rate (13%) compared with the closest matching germline DNA sequence, highlighting the importance of de novo sequencing at the protein level. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
DNA , Imunoglobulina G , Humanos , Imunoglobulina G/genética , Espectrometria de Massas , Peptídeos , Plasma
18.
Nat Commun ; 12(1): 5769, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599175

RESUMO

Distinct SARS-CoV-2 lineages, discovered through various genomic surveillance initiatives, have emerged during the pandemic following unprecedented reductions in worldwide human mobility. We here describe a SARS-CoV-2 lineage - designated B.1.620 - discovered in Lithuania and carrying many mutations and deletions in the spike protein shared with widespread variants of concern (VOCs), including E484K, S477N and deletions HV69Δ, Y144Δ, and LLA241/243Δ. As well as documenting the suite of mutations this lineage carries, we also describe its potential to be resistant to neutralising antibodies, accompanying travel histories for a subset of European cases, evidence of local B.1.620 transmission in Europe with a focus on Lithuania, and significance of its prevalence in Central Africa owing to recent genome sequencing efforts there. We make a case for its likely Central African origin using advanced phylogeographic inference methodologies incorporating recorded travel histories of infected travellers.


Assuntos
COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/genética , África Central/epidemiologia , Anticorpos Neutralizantes/imunologia , COVID-19/epidemiologia , Europa (Continente)/epidemiologia , Humanos , Evasão da Resposta Imune/genética , Mutação , Filogenia , Filogeografia , SARS-CoV-2/classificação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Viagem/estatística & dados numéricos
19.
J Proteome Res ; 20(7): 3559-3566, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34121409

RESUMO

Antibody sequence information is crucial to understanding the structural basis for antigen binding and enables the use of antibodies as therapeutics and research tools. Here, we demonstrate a method for direct de novo sequencing of monoclonal IgG from the purified antibody products. The method uses a panel of multiple complementary proteases to generate suitable peptides for de novo sequencing by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a bottom-up fashion. Furthermore, we apply a dual fragmentation scheme, using both stepped high-energy collision dissociation (stepped HCD) and electron-transfer high-energy collision dissociation (EThcD), on all peptide precursors. The method achieves full sequence coverage of the monoclonal antibody herceptin, with an accuracy of 99% in the variable regions. We applied the method to sequence the widely used anti-FLAG-M2 mouse monoclonal antibody, which we successfully validated by remodeling a high-resolution crystal structure of the Fab and demonstrating binding to a FLAG-tagged target protein in Western blot analysis. The method thus offers robust and reliable sequences of monoclonal antibodies.


Assuntos
Análise de Sequência de Proteína , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Cromatografia Líquida , Camundongos , Peptídeo Hidrolases
20.
Nat Commun ; 12(1): 1642, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712599

RESUMO

Adeno-associated viruses (AAVs) are increasingly used as gene therapy vectors. AAVs package their genome in a non-enveloped T = 1 icosahedral capsid of ~3.8 megaDalton, consisting of 60 subunits of 3 distinct viral proteins (VPs), which vary only in their N-terminus. While all three VPs play a role in cell-entry and transduction, their precise stoichiometry and structural organization in the capsid has remained elusive. Here we investigate the composition of several AAV serotypes by high-resolution native mass spectrometry. Our data reveal that the capsids assemble stochastically, leading to a highly heterogeneous population of capsids of variable composition, whereby even the single-most abundant VP stoichiometry represents only a small percentage of the total AAV population. We estimate that virtually every AAV capsid in a particular preparation has a unique composition. The systematic scoring of the simulations against experimental native MS data offers a sensitive new method to characterize these therapeutically important heterogeneous capsids.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Dependovirus/metabolismo , Animais , Dependovirus/genética , Células HEK293 , Humanos , Sorogrupo , Células Sf9 , Proteínas Virais/metabolismo , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...